Välj den region som bäst passar din plats eller dina preferenser.
Denna inställning styr språket för användargränssnittet, inklusive knappar, menyer och all text på webbplatsen. Välj ditt föredragna språk för bästa surfupplevelse.
Välj de språk för jobbannonser du vill se. Denna inställning avgör vilka jobbannonser som visas för dig.
The Nonlinear optics for Epitaxial growth of Advanced Thin films (NEAT) laboratory within the institute of Multifunctional Ferroic Materials in the Materials Department is seeking for PhD candidates. We work on the epitaxial deposition of functional oxide thin films using pulsed laser deposition. We use in-situ diagnostic tools during the growth process to advance the design of technologically relevant oxide thin films. In particular, the combination of state of the art non-linear optics monitoring and electron spectroscopy in situ allows investigating the dynamics of the functional properties as we grow the films from the very first unit cell. We are interested in studying the evolution of physical properties of epitaxial thin films in the ultrathin regime and in the investigation of interface related phenomena in multilayers.
Light-matter interaction is a ubiquitous phenomenon in condensed matter science: It is a prerequisite for elasto-, electro-, and magneto-optical effects that has established light as a versatile, non-invasive probe for functional materials. As a result, optical characterization techniques have significantly contributed to our understanding of the physics governing functional properties of technology-relevant electrically and magnetically ordered materials. Conversely, taking advantage of lightmatter interaction to achieve a remote optical control of such order parameters has been much less explored, especially in technology relevant ferroelectric thin films. This obstructs the development of all-optical control of energy-efficient devices for a new generation of ultrafast nanoscale oxide electronics. The PhD project unites our leading international expertise in oxide thin film growth and nonlinear laser spectroscopy. We will pioneer the study of reversible optical control of spontaneous electrical polarization in our ferroelectric thin films.
The goal of the doctoral project is to explore optical control of polarization in various oxide-based epitaxial heterostructures. Using our unique capacity to engineer oxide thin films interfaces with atomic precision, combined with our state of the art non invasive optical probe of polarization in thin films, we will advance the understanding of the optical manipualtion of polar textures in epitxial systems. By engineering defect concentration, electrostatic boundary conditions at the interface and epitxial strain, we will establish a reversible and robust optical handle on the polarization. This may expend to the remote control of ferroelectric field effects in advanced multiferoic and magnetoelectric types heterostructures.
Our in-situ monitoring capacity of polarization during the growth and now, during optical poling is unique in the world. This PhD project thus offers plenty of room for exciting physics and groundbreaking discoveries, and our lab has exactly the expertise to acquire these. Our intense collaboration with experts in the field of electron microscoy, magnetic characterization and nitrogen vacancy scanning electrometry enable a multiscale apporach.
Candidates will join our international NEAT research team of highly motivated PhD and Master students and use our workplaces for thin films growth and characterization with nonlinear laser spectroscopy. They will design and set up their own experiment and are never afraid to tear it down and try a new approach, should this become necessary. Despite the focus on thin-film growth experiments, the involvement of other experimental techniques and in-depth discussion with theoretical groups are likely.
We look forward to receiving your online application. Please submit the following.
Please note that we exclusively accept applications submitted through our online application portal.
For further information please visit our website.
Questions regarding the position should be directed by email to Prof. Morgan Trassin (morgan.trassin@mat.ethz.ch). Selection will start immediately, so early submissions are strongly encouraged.
Postdoc position for the Nulling Interferometry Cryogenic Experiment (NICE)Extrasolar planets science is one of the most dynamic and vibrant fields in modern astrophysics. With more than 5500 exopl...
ETH Zürich is well known for its excellent education, ground-breaking fundamental research and for implementing its results directly into practice.
Besök arbetsgivarsidan